Palladium complexes with $\mathbf{P d} \rightarrow \mathbf{B}$ dative bonds: Analysis of the bonding in the palladaboratrane compound $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\left(\mathrm{PMe}_{3}\right) \dagger$

Keliang Pang, Stephanie M. Quan and Gerard Parkin*
Received (in Berkeley, CA, USA) 14th August 2006, Accepted 15th September 2006
First published as an Advance Article on the web 12th October 2006
DOI: 10.1039/b611654j

The dinuclear complex $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$, which features a $\mathrm{Pd} \rightarrow \mathrm{B}$ dative bond, may be obtained by the reaction of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{K}$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$; treatment of $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{But}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$ with PMe_{3} affords the mononuclear boratrane derivative $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\left(\mathrm{PMe}_{3}\right)$, for which a molecular orbital analysis indicates that the palladium center possesses a d^{8} configuration.

Tris(2-mercapto-1-R-imidazolyl)hydroborato ligands $\left(\left[\mathrm{HB}\left(\mathrm{mim}^{\mathrm{R}}\right)_{3}\right]=\right.$ $\left.\left[\mathrm{Tm}^{\mathrm{R}}\right]\right),{ }^{1}$ are emerging as a popular class of ligands with diverse applications. A particularly recent development is concerned with reactions that involve cleavage of the $\mathrm{B}-\mathrm{H}$ bond to yield compounds in which the $\left[\mathrm{B}\left(\mathrm{mim}^{\mathrm{R}}\right)_{3}\right]$ fragment is attached to the metal via a metal-to-ligand $\mathrm{M} \rightarrow \mathrm{B}$ dative bond. ${ }^{2}$ The first example of this transformation was reported in 1999 with Hill et al.'s synthesis of $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Me}}\right)_{3}\right] \mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right),{ }^{3}$ and is noteworthy because it provided structural characterization of a transition metal compound with a metal-to-ligand $\mathrm{M} \rightarrow \mathrm{B}$ dative bond. ${ }^{4,5}$ In addition to ruthenium, a variety of $\left\{\mathrm{M}\left[\mathrm{B}\left(\operatorname{mim}^{\mathrm{R}}\right)_{3}\right]\right\}$ complexes have subsequently been obtained for other transition metals, including Fe , Os, Co, Rh, Ir and $\mathrm{Pt} .{ }^{6,7}$ Palladium, however, is a transition metal for which a $\left\{\mathrm{M}\left[\mathrm{B}\left(\mathrm{mim}^{\mathrm{R}}\right)_{3}\right]\right\}$ derivative with a $\mathrm{Pd} \rightarrow \mathrm{B}$ dative bond has yet to be isolated and structurally characterized. Compounds that feature $\mathrm{Pd} \rightarrow \mathrm{B}$ dative bonds, therefore, represent interesting synthetic targets. Two such complexes, namely mononuclear $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\left(\mathrm{PMe}_{3}\right)$ and dinuclear $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\operatorname{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$, are reported here. In addition, $\left[\kappa^{2}-\mathrm{AcOB}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right]_{2} \mathrm{Pd}$, a complex that contains a novel tris(2-mercaptoimidazolyl)borate ligand that features acetate substitution on boron, is also described.

Access to a complex that contains a $\mathrm{Pd} \rightarrow \mathrm{B}$ dative bond is readily achieved by the reaction of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{K}$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$. Thus, as illustrated in Scheme 1, treatment of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{K}$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$ under an inert atmosphere yields $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}_{\}_{2}}\right.$, which has been structurally characterized by X-ray diffraction (Fig. 1), ${ }^{8}$ thereby providing definitive evidence for the existence of the $\mathrm{Pd} \rightarrow \mathrm{B}$ bond. ${ }^{9}$ Also of note, the bridging $\left[\mathrm{B}\left(\mathrm{mim}^{\mathrm{But}}\right)_{3}\right]$ ligand adopts a $\kappa^{3}-\mathrm{S}_{2} \mathrm{~B}$ coordination mode to one metal and a $\kappa^{1}-\mathrm{S}$ coordination mode to the other. While complexes with tris(2-mercapto-1-R-imidazolyl)borane ligands are common, ${ }^{3,6,7 b, d}$ the coordination motif observed for $\left\{\left[\mu-\kappa, \kappa^{3}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}_{2}\right.$ represents a new bonding mode for this class of ligand. ${ }^{10}$
$\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$ is fluxional on the NMR timescale at room temperature, but a spectrum that exhibits three chemically

[^0]

Scheme 1
inequivalent mim ${ }^{\mathrm{Bu}^{t}}$ groups may be observed upon cooling to 228 K . The $\kappa^{1}-\mathrm{S}$ bridging interaction in $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{But}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$ is readily cleaved upon addition of PMe_{3} to give the mononuclear palladaboratrane derivative $\left[\mathrm{K}^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\left(\mathrm{PMe}_{3}\right)$, as illustrated in Scheme 1. The molecular structure of $\left[\kappa^{4}-\right.$ $\left.\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \operatorname{Pd}\left(\mathrm{PMe}_{3}\right)$ has been determined by X-ray diffraction (Fig. 2), ${ }^{8}$ thereby demonstrating that the palladium has a trigonal
 nates in a $\kappa^{4}-\mathrm{S}_{3} \mathrm{~B}$ manner with the boratrane motif.

Fig. 1 Molecular structure of $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-B\left(\operatorname{mim}^{B u}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$.

Fig. 2 Molecular structure of $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \operatorname{Pd}\left(\mathrm{PMe}_{3}\right)$.
The most important aspect of both $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}^{1}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$ and $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}^{t}}\right)_{3}\right] \operatorname{Pd}\left(\mathrm{PMe}_{3}\right)$ is concerned with the nature of the $\mathrm{Pd} \rightarrow \mathrm{B}$ interaction, because metals are normally the electron pair acceptor component of a dative bond rather than the electron pair donor. Decisive evidence that the $\mathrm{Pd} \rightarrow \mathrm{B}$ interactions in $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\right.\right.$ $\left.\left.\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$ and $\left[\kappa^{4}-\mathrm{B}\left(\operatorname{mim}^{\mathrm{Bu}^{t}}\right)_{3}\right] \mathrm{Pd}\left(\mathrm{PMe}_{3}\right)$ are significant is provided by the fact that the $\mathrm{Pd}-\mathrm{B}$ bond lengths are close to the shortest values listed in the Cambridge Structural Database. ${ }^{11}$ For example, the $\mathrm{Pd}-\mathrm{B}$ bond lengths of $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$ $(2.073(4) \AA)$ and $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}^{4}}\right)_{3}\right] \operatorname{Pd}\left(\mathrm{PMe}_{3}\right)(2.050(8) \AA)$ are comparable to those in the boryl compounds $\operatorname{Pd}($ dmpe $)\{\mathrm{B}-1,2-$ $\left.(\mathrm{NMe})_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right\}\left(\mathrm{SnMe}_{3}\right)(2.077(6) \AA)^{12}$ and $\mathrm{Pd}\left(\mathrm{PMe}_{3}\right)_{2}\{\mathrm{~B}-1,2-$ $\left.(\mathrm{NMe})_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right\} \mathrm{Cl}(2.006(9) \AA$ and $2.037(9) \AA) .{ }^{13,14}$ Further evidence in support of a $\mathrm{Pd}-\mathrm{B}$ interaction is provided by the observation of a distinctive ${ }^{2} J_{\mathrm{P}-\mathrm{B}}$ coupling constant of 116 Hz in both the ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra.

Since the $\mathrm{Pd} \rightarrow \mathrm{B}$ interactions are significant, an important issue to consider is the impact of the coordination of boron to the metal center, specifically with respect to the change in d^{n} configuration. In this regard, the closely related compound $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Me}}\right)_{3}\right] \operatorname{Pt}\left(\mathrm{PPh}_{3}\right)$ has been described as the first five-coordinate zerovalent d^{10} platinum compound, thereby suggesting that the coordination of boron to the platinum has no impact on the valence state or d^{n} configuration of the metal center. ${ }^{15}$ On the other hand, a molecular orbital analysis of $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{H}}\right)_{3}\right] \operatorname{Ir}\left(\mathrm{PH}_{3}\right) \mathrm{Cl}$ indicates that the complex is appropriately described as possessing an octahedral d^{6} iridium center, thereby indicating that coordination of the boron to a metal center reduces the d^{n} configuration to $\mathrm{d}^{n-2} \cdot{ }^{6 c}$ Adopting the former view of a $\mathrm{M} \rightarrow \mathrm{B}$ interaction, the palladium complex $\left[\kappa^{4}-\right.$ $\left.\mathrm{B}\left(\operatorname{mim}^{\mathrm{Bu}^{t}}\right)_{3}\right] \mathrm{Pd}\left(\mathrm{PMe}_{3}\right)$ would be described as possessing a zerovalent $\mathrm{d}^{10} \mathrm{Pd}$ center, while the latter view would characterize the molecule as possessing a divalent $\mathrm{d}^{8} \mathrm{Pd}$ center.

In order to evaluate which one of these conflicting views more appropriately describes the bonding in $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}^{t}}\right)_{3}\right] \mathrm{Pd}\left(\mathrm{PMe}_{3}\right)$, we performed a molecular orbital analysis, the results of which indicate that the palladium center is more accurately characterized by a d^{8} configuration, with only four of the metal-based non-bonding and antibonding orbitals of d-character being occupied (Fig. 3 and Fig. 4). Ad ${ }^{10}$ configuration would require occupation of the LUMO, which has $\mathrm{d}_{\mathrm{z}^{2}}$ character, and corresponds to the antibonding component of the interaction with the five ligand sigma orbitals. The molecular orbital analysis of $\left[\kappa^{4}-\mathrm{B}\left(\operatorname{mim}^{\mathrm{Bu}}\right)_{3}\right] \operatorname{Pd}\left(\mathrm{PMe}_{3}\right)$ is, therefore, in accord with the notion that coordination of a BX_{3} group to a metal reduces the d^{n} configuration to d^{n-2} because the metal is required to provide two electrons to form the $\mathrm{M} \rightarrow \mathrm{B}$ bond. ${ }^{2,6 c}$

Fig. 3 Molecular orbital diagram for $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \operatorname{Pd}\left(\mathrm{PMe}_{3}\right)$ with idealized $C_{3 \mathrm{v}}$ symmetry, focusing on σ-interactions.

Fig. 4 The molecular orbitals involved in the B-Pd-P interaction for $\left[\kappa^{4}-\right.$ $\left.\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\left(\mathrm{PMe}_{3}\right)$.

By analogy, $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\operatorname{mim}^{\mathrm{Bu}^{t}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$ is also classified as possessing $\mathrm{d}^{8} \mathrm{Pd}$ centers. Evidence in support of this assignment is provided by the fact that the coordination geometry of palladium in this complex much more closely resembles a distorted square-planar geometry than a tetrahedral geometry (Fig. 1). ${ }^{16,17}$ The significance of this observation is that the geometry adopted by four-coordinate palladium and platinum compounds is closely linked to their d^{n} configuration. Specifically, it is well known that d^{10} metal centers are characterized by a tetrahedral geometry, whereas d^{8} metal centers are commonly characterized by a

Fig. 5 Molecular structure of $\left[\kappa^{2}-\mathrm{AcOB}\left(\mathrm{mim}^{\mathrm{But}}\right)_{3}\right]_{2} \mathrm{Pd}$ (triclinic form).
square-planar geometry, as illustrated by $\mathrm{d}^{10} \mathrm{M}\left(\mathrm{PR}_{3}\right)_{4}$ and d^{8} $\mathrm{M}\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cl}_{2}$, respectively. ${ }^{18,19}$ The distorted square-planar geometry for $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$ is, therefore, also in agreement with the notion of ad^{8} configuration at Pd .

While the dimer $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$ is obtained from the reaction of $\left[\mathrm{Tm}^{\mathrm{Bu}}\right] \mathrm{K}$ with $\mathrm{Pd}(\mathrm{OAc})_{2}$ when performed in an inert atmosphere, the novel complex $\left[\kappa^{2}-\mathrm{AcOB}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right]_{2} \mathrm{Pd}$ may be isolated if the reaction is performed in air or in the presence of I_{2} (Scheme 1). The molecular structure of $\left[\kappa^{2}-\mathrm{AcOB}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right]_{2} \mathrm{Pd}$ has been determined by X-ray diffraction (Fig. 5), ${ }^{8}$ thereby demonstrating the formation of a unique tris(2-mercaptoimidazolyl) borate ligand which features an acetate substituent on boron. In this regard, related $\left[\mathrm{XTm}^{\mathrm{Bu}}\right]$ ligands have recently been obtained in an iron system via reactions of the ferraboratrane $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Fe}(\mathrm{CO})_{2}$ with, for example, $[\mathrm{PhC}(\mathrm{O}) \mathrm{O}]_{2}$ and CHCl_{3}, to give $\left[\mathrm{PhC}(\mathrm{O}) \mathrm{OTm}^{\mathrm{Bu}}\right] \mathrm{Fe}\left[\kappa^{2}-\mathrm{OC}(\mathrm{O}) \mathrm{Ph}\right]$ and $\left[\mathrm{ClTm}^{\mathrm{Bu}}\right] \mathrm{FeCl}$, respectively. ${ }^{6 d, 20}$ On this basis, it is possible that a $\left\{\left[\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \operatorname{Pd}(\mathrm{OAc})\right\}$ boratrane species plays a role in the formation of $\left[\kappa^{2}-\mathrm{AcOB}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right]_{2} \mathrm{Pd}$ via a metal-centered $\mathrm{B}-\mathrm{O}$ coupling step, but other mechanisms are certainly feasible.

In summary, $\left[\kappa^{4}-B\left(\operatorname{mim}^{B u}\right)_{3}\right] \operatorname{Pd}\left(\mathrm{PMe}_{3}\right)$ and $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\right.\right.$ $\left.\left.\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$ have been shown by X-ray diffraction to possess $\mathrm{Pd} \rightarrow \mathrm{B}$ bonds. Calculations indicate that the palladium center in $\left[\kappa^{4}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}}\right)_{3}\right] \operatorname{Pd}\left(\mathrm{PMe}_{3}\right)$ has a d ${ }^{8}$ (and not d^{10}) configuration, in accord with the concept that the palladium center must provide a pair of electrons to form the $\mathrm{Pd} \rightarrow \mathrm{B}$ bond. ${ }^{2}$ Finally, $\left[\kappa^{2}-\mathrm{AcOB}\left(\mathrm{mim}^{\mathrm{But}}\right)_{3}\right]_{2} \mathrm{Pd}$, which contains an interesting boronfunctionalized $\left[\mathrm{AcOTm}^{\mathrm{Bu}}\right]$ ligand, has been isolated.

We thank the National Science Foundation (CHE-03-50498) for their support of this research.

Notes and references

1 For example, derivatives with $\mathrm{R}=\mathrm{Me},{ }^{a-c} \mathrm{Ph}^{d} \mathrm{Mes},{ }^{d} \mathrm{Cum}^{e}, \mathrm{Bu}^{\mathrm{t}},{ }^{e}$ $\mathrm{CH}_{2} \mathrm{Ph},{ }^{f}$ and p-Tol ${ }^{f}$ are known. See: (a) M. Garner, J. Reglinski, I. Cassidy, M. D. Spicer and A. R. Kennedy, Chem. Commun., 1996, 1975; (b) J. Reglinski, M. Garner, I. D. Cassidy, P. A. Slavin, M. D. Spicer and D. R. Armstrong, J. Chem. Soc., Dalton Trans., 1999, 2119; (c) C. Santini, G. G. Lobbia, C. Pettinari, M. Pellei, G. Valle and S. Calogero, Inorg. Chem., 1998, 37, 890; (d) C. Kimblin, B. M. Bridgewater, D. G. Churchill and G. Parkin, Chem. Commun., 1999, 2301; (e) M. Tesmer, M. Shu and H. Vahrenkamp, Inorg. Chem., 2001, 40, 4022; (f) S. Bakbak, V. K. Bhatia, C. D. Incarvito, A. L. Rheingold and D. Rabinovich, Polyhedron, 2001, 20, 3343.

2 Dative $\mathrm{M} \rightarrow \mathrm{B}$ interactions can also be represented as $\mathrm{M}^{+}-\mathrm{B}^{-}$. Despite their different appearance, however, these representations correspond to exactly the same bonding situation. See, for example: G. Parkin, Organometallics, 2006, 25, 4744.
3 (a) A. F. Hill, G. R. Owen, A. J. P. White and D. J. Williams, Angew. Chem., Int. Ed., 1999, 38, 2759; (b) M. R. St.-J. Foreman, A. F. Hill, G. R. Owen, A. J. P. White and D. J. Williams, Organometallics, 2003, 22, 4446.
4 Early examples of compounds proposed to possess $M \rightarrow B$ interactions have been questioned. See, for example: (a) H. Braunschweig, Angew. Chem., Int. Ed., 1998, 37, 1786; (b) H. Braunschweig and M. Colling, Coord. Chem. Rev., 2001, 223, 1.
5 Structurally characterized complexes with $\mathrm{M} \rightarrow \mathrm{B}$ bonds are, however, well known for the main group metals. See: A. H. Cowley, Chem. Commun., 2004, 2369 and references therein.
6 (a) I. R. Crossley, A. F. Hill and A. C. Willis, Organometallics, 2006, 25, 289 and references therein; (b) D. J. Mihalcik, J. L. White, J. M. Tanski, L. N. Zakharov, G. P. A. Yap, C. D. Incarvito, A. L. Rheingold and D. Rabinovich, Dalton Trans., 2004, 1626; (c) V. K. Landry, J. G. Melnick, D. Buccella, K. Pang, J. C. Ulichny and G. Parkin, Inorg. Chem., 2006, 45, 2588; (d) J. S. Figueroa, J. G. Melnick and G. Parkin, Inorg. Chem., 2006, 45, 7056.

7 For other types of complexes with $\mathrm{M} \rightarrow \mathrm{B}$ bonds, see ref. 5 and: (a) K. S. Cook, W. E. Piers, T. K. Woo and R. McDonald, Organometallics, 2001, 20, 3927; (b) K. S. Cook, W. E. Piers and S. J. Rettig, Organometallics, 1999, 18, 1575; (c) I. R. Crossley, A. F. Hill and A. C. Willis, Organometallics, 2005, 24, 1062; (d) S. Bontemps, H. Gornitzka, G. Bouhadir, K. Miqueu and D. Bourissou, Angew. Chem., Int. Ed., 2006, 45, 1611; (e) R. J. Blagg, J. P. H. Charmant, N. G. Connelly, M. F. Haddow and A. G. Orpen, Chem. Commun., 2006, 2350; (f) H. Braunschweig, K. Radacki, D. Rais and G. R. Whittell, Angew. Chem., Int. Ed., 2005, 44, 1192; (g) S. A. Westcott, T. B. Marder, R. T. Baker, R. L. Harlow, J. C. Calabrese, K. C. Lam and Z. Lin, Polyhedron, 2004, 23, 2665; (h) D. Curtis, M. J. G. Lesley, N. C. Norman, A. G. Orpen and J. Starbuck, J. Chem. Soc., Dalton Trans., 1999, 1687; (i) H. Braunschweig, C. Kollann and D. Rais, Angew. Chem., Int. Ed., 2006, 45, 5254.
8 The molecular structures of all new compounds have been determined by X-ray diffraction. Thermal parameters for the structures illustrated are at the 20% probability level. CCDC $617723-617726$. For crystallographic data in CIF or other electronic format, see DOI: 10.1039/ b611654j.
9 The mechanism of $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\operatorname{mim}^{\mathrm{But}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$ formation and the ultimate fate of the $\mathrm{B}-\mathrm{H}$ hydrogen is unknown.
10 A binuclear rhodium complex derivative that exhibits a bridging $\left[\mathrm{B}\left(\mathrm{mim}^{\mathrm{Me}}\right)_{3}\right]$ ligand has been reported, but the bridging mode is very different to that in $\left\{\left[\mu-\kappa^{1}, \kappa^{3}-\mathrm{B}\left(\mathrm{mim}^{\mathrm{Bu}^{t}}\right)_{3}\right] \mathrm{Pd}\right\}_{2}$. See: I. R. Crossley, A. F. Hill, E. R. Humphrey and A. C. Willis, Organometallics, 2005, 24, 4083.
$11 \mathrm{Pd}-\mathrm{B}$ bond lengths for compounds listed in the Cambridge Structural Database (CSD) span the range 2.006-2.686 A, with a mean value of 2.259 Å (CSD version 5.27).

12 S. Onozawa, Y. Hatanaka, T. Sakakura, S. Shimada and M. Tanaka, Organometallics, 1996, 15, 5450-5452.
13 S. Onozawa and M. Tanaka, Organometallics, 2001, 20, 2956.
14 For a further example, see: H. Braunschweig, K. Radacki, D. Rais and G. R. Whittell, Angew. Chem., Int. Ed., 2005, 44, 1192.

15 I. R. Crossley and A. F. Hill, Organometallics, 2004, 23, 5656.
$16 \mathrm{~B}-\mathrm{Pd}-\mathrm{S}^{\prime}=178.4(1)^{\circ}$ and $\mathrm{S} 1-\mathrm{Pd}-\mathrm{S} 2=154.7(1)^{\circ}$.
17 Butterfly distortions have been observed for some other four-coordinate d^{8} Pd complexes. See: (a) C. M. Frech, L. J. W. Shimon and D. Milstein, Angew. Chem., Int. Ed., 2005, 44, 1709; (b) O. Grossman, C. Azerraf and D. Gelman, Organometallics, 2006, 25, 375; (c) J. Yin and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 6043.

18 Y. Jean, Molecular Orbitals of Transition Metal Complexes, Oxford University Press, New York, 2005, pp. 66.
19 For a rare example of a tetrahedral d^{8} Pd complex, see: J. S. L. Yeo, J. J. Vittal and T. S. A. Hor, Chem. Commun., 1999, 1477.

20 For an example of the transfer of an acetate ligand to boron, see: K. Fujita, S. Hikichi, M. Akita and Y. Moro-oka, J. Chem. Soc., Dalton Trans., 2000, 117.

[^0]: Department of Chemistry, Columbia University in the City of New York, New York 10027,USA.E-mail: parkin@columbia.edu
 \dagger Electronic supplementary information (ESI) available: Experimental details and crystallographic data. See DOI: 10.1039/b611654j

