Palladium complexes with Pd \rightarrow B dative bonds: Analysis of the bonding in the palladaboratrane compound [κ^4 -B(mim^{Bu^t})₃]Pd(PMe₃)[†]

Keliang Pang, Stephanie M. Quan and Gerard Parkin*

Received (in Berkeley, CA, USA) 14th August 2006, Accepted 15th September 2006 First published as an Advance Article on the web 12th October 2006 DOI: 10.1039/b611654j

The dinuclear complex $\{[\mu-\kappa^1,\kappa^3-B(\min^{Bu'})_3]Pd\}_2$, which features a Pd \rightarrow B dative bond, may be obtained by the reaction of $[Tm^{Bu'}]K$ with Pd(OAc)₂; treatment of $\{[\mu-\kappa^1,\kappa^3-B(\min^{Bu'})_3]Pd\}_2$ with PMe₃ affords the mononuclear boratrane derivative $[\kappa^4-B(\min^{Bu'})_3]Pd(PMe_3)$, for which a molecular orbital analysis indicates that the palladium center possesses a d⁸ configuration.

Tris(2-mercapto-1-R-imidazolyl)hydroborato ligands ($[HB(mim^R)_3] =$ $[Tm^{R}]$,¹ are emerging as a popular class of ligands with diverse applications. A particularly recent development is concerned with reactions that involve cleavage of the B-H bond to yield compounds in which the $[B(mim^R)_3]$ fragment is attached to the metal via a metal-to-ligand $M \rightarrow B$ dative bond.² The first example of this transformation was reported in 1999 with Hill et al.'s synthesis of $[\kappa^4-B(\min^{Me})_3]Ru(CO)(PPh_3)^3$ and is noteworthy because it provided structural characterization of a transition metal compound with a metal-to-ligand $M \rightarrow B$ dative bond.^{4,5} In addition to ruthenium, a variety of $\{M[B(mim^R)_3]\}$ complexes have subsequently been obtained for other transition metals, including Fe, Os, Co, Rh, Ir and Pt.^{6,7} Palladium, however, is a transition metal for which a $\{M[B(mim^R)_3]\}$ derivative with a $Pd \rightarrow B$ dative bond has yet to be isolated and structurally characterized. Compounds that feature $Pd \rightarrow B$ dative bonds, therefore, represent interesting synthetic targets. Two such complexes, namely mononuclear $[\kappa^4-B(mim^{But})_3]Pd(PMe_3)$ and dinuclear $\{[\mu-\kappa^1,\kappa^3-B(mim^{But})_3]Pd\}_2$, are reported here. In addition, $[\kappa^2$ -AcOB(mim^{But})₃]₂Pd, a complex that contains a novel tris(2-mercaptoimidazolyl)borate ligand that features acetate substitution on boron, is also described.

Access to a complex that contains a Pd \rightarrow B dative bond is readily achieved by the reaction of [Tm^{Bu'}]K with Pd(OAc)₂. Thus, as illustrated in Scheme 1, treatment of [Tm^{Bu'}]K with Pd(OAc)₂ under an inert atmosphere yields {[μ - κ^1 , κ^3 -B(mim^{Bu'})₃]Pd}₂, which has been structurally characterized by X-ray diffraction (Fig. 1),⁸ thereby providing definitive evidence for the existence of the Pd \rightarrow B bond.⁹ Also of note, the bridging [B(mim^{Bu'})₃] ligand adopts a κ^3 -S₂B coordination mode to one metal and a κ^1 -S coordination mode to the other. While complexes with tris(2mercapto-1-R-imidazolyl)borane ligands are common,^{3,6,7b,d} the coordination motif observed for {[μ - κ , κ^3 -B(mim^{Bu'})₃]Pd}₂ represents a new bonding mode for this class of ligand.¹⁰

 $\{[\mu-\kappa^1,\kappa^3-B(mim^{Bui})_3]Pd\}_2$ is fluxional on the NMR timescale at room temperature, but a spectrum that exhibits three chemically

Scheme 1

inequivalent mim^{Bu'} groups may be observed upon cooling to 228 K. The κ^1 -S bridging interaction in {[μ - κ^1 , κ^3 -B(mim^{Bu'})₃]Pd}₂ is readily cleaved upon addition of PMe₃ to give the mononuclear palladaboratrane derivative [κ^4 -B(mim^{Bu'})₃]Pd(PMe₃), as illustrated in Scheme 1. The molecular structure of [κ^4 -B(mim^{Bu'})₃]Pd(PMe₃) has been determined by X-ray diffraction (Fig. 2),⁸ thereby demonstrating that the palladium has a trigonal bipyramidal geometry, in which the [B(mim^{Bu'})₃] ligand coordinates in a κ^4 -S₃B manner with the boratrane motif.

Fig. 1 Molecular structure of $\{[\mu-\kappa^1,\kappa^3-B(\min^{Bu^1})_3]Pd\}_2$.

[†] Electronic supplementary information (ESI) available: Experimental details and crystallographic data. See DOI: 10.1039/b611654j

Fig. 2 Molecular structure of $[\kappa^4-B(\min^{Bu^1})_3]Pd(PMe_3)$.

The most important aspect of both $\{[\mu-\kappa^1,\kappa^3-B(\min^{Bu^t})_3]Pd\}_2$ and $[\kappa^4-B(\min^{But})_3]Pd(PMe_3)$ is concerned with the nature of the $Pd \rightarrow B$ interaction, because metals are normally the electron pair acceptor component of a dative bond rather than the electron pair *donor*. Decisive evidence that the Pd \rightarrow B interactions in {[μ - κ^1 , κ^3 - $B(\min^{Bu^{t}})_{3}Pd_{2}$ and $[\kappa^{4}-B(\min^{Bu^{t}})_{3}Pd(PMe_{3})$ are significant is provided by the fact that the Pd-B bond lengths are close to the shortest values listed in the Cambridge Structural Database.¹¹ For example, the Pd-B bond lengths of $\{[\mu-\kappa^1,\kappa^3-B(mim^{But})_3]Pd\}_2$ (2.073(4) Å) and $[\kappa^4-B(\min^{Bu^1})_3]Pd(PMe_3)$ (2.050(8) Å) are comparable to those in the boryl compounds Pd(dmpe){B-1,2- $(NMe)_2CH_2CH_2$ (SnMe₃) (2.077(6) Å)¹² and Pd(PMe₃)₂ {B-1,2-(NMe)₂CH₂CH₂Cl (2.006(9) Å and 2.037(9) Å).^{13,14} Further evidence in support of a Pd-B interaction is provided by the observation of a distinctive ${}^{2}J_{P-B}$ coupling constant of 116 Hz in both the ${}^{11}B{}^{1}H{}$ and ${}^{31}P{}^{1}H{}$ NMR spectra.

Since the $Pd \rightarrow B$ interactions are significant, an important issue to consider is the impact of the coordination of boron to the metal center, specifically with respect to the change in dⁿ configuration. In this regard, the closely related compound $[\kappa^4-B(\min^{Me})_3]Pt(PPh_3)$ has been described as the first five-coordinate zerovalent d¹⁰ platinum compound, thereby suggesting that the coordination of boron to the platinum has no impact on the valence state or d^n configuration of the metal center.¹⁵ On the other hand, a molecular orbital analysis of $[\kappa^4-B(mim^H)_3]Ir(PH_3)Cl$ indicates that the complex is appropriately described as possessing an octahedral d⁶ iridium center, thereby indicating that coordination of the boron to a metal center reduces the d^n configuration to d^{n-2} .^{6c} Adopting the former view of a M \rightarrow B interaction, the palladium complex [κ^4 -B(mim^{But})₃]Pd(PMe₃) would be described as possessing a zerovalent d¹⁰ Pd center, while the latter view would characterize the molecule as possessing a divalent d⁸ Pd center.

In order to evaluate which one of these conflicting views more appropriately describes the bonding in [κ^4 -B(mim^{But})₃]Pd(PMe₃), we performed a molecular orbital analysis, the results of which indicate that the palladium center is more accurately characterized by a d⁸ configuration, with only four of the metal-based non-bonding and antibonding orbitals of d-character being occupied (Fig. 3 and Fig. 4). A d¹⁰ configuration would require occupation of the LUMO, which has d_{z²} character, and corresponds to the antibonding component of the interaction with the five ligand sigma orbitals. The molecular orbital analysis of [κ^4 -B(mim^{But})₃]Pd(PMe₃) is, therefore, in accord with the notion that coordination of a BX₃ group to a metal reduces the dⁿ configuration to dⁿ⁻² because the metal is required to provide two electrons to form the M \rightarrow B bond.^{2,6c}

Fig. 3 Molecular orbital diagram for $[\kappa^4-B(\min^{Bu'})_3]Pd(PMe_3)$ with idealized C_{3v} symmetry, focusing on σ -interactions.

Fig. 4 The molecular orbitals involved in the B–Pd–P interaction for $[\kappa^4-B(mim^{Bu'})_3]Pd(PMe_3)$.

By analogy, $\{[\mu-\kappa^1,\kappa^3-B(\min^{Bu'})_3]Pd\}_2$ is also classified as possessing d⁸ Pd centers. Evidence in support of this assignment is provided by the fact that the coordination geometry of palladium in this complex much more closely resembles a distorted square-planar geometry than a tetrahedral geometry (Fig. 1).^{16,17} The significance of this observation is that the geometry adopted by four-coordinate palladium and platinum compounds is closely linked to their dⁿ configuration. Specifically, it is well known that d¹⁰ metal centers are characterized by a tetrahedral geometry, whereas d⁸ metal centers are commonly characterized by a

Fig. 5 Molecular structure of $[\kappa^2$ -AcOB(mim^{But})₃]₂Pd (triclinic form).

square-planar geometry, as illustrated by d¹⁰ M(PR₃)₄ and d⁸ M(PR₃)₂Cl₂, respectively.^{18,19} The distorted square-planar geometry for { $[\mu-\kappa^1,\kappa^3-B(\min^{Bu'})_3]Pd$ }₂ is, therefore, also in agreement with the notion of a d⁸ configuration at Pd.

While the dimer {[μ - κ^1 , κ^3 -B(mim^{Bu'})₃]Pd}₂ is obtained from the reaction of [Tm^{Bu'}]K with Pd(OAc)₂ when performed in an inert atmosphere, the novel complex [κ^2 -AcOB(mim^{Bu'})₃]₂Pd may be isolated if the reaction is performed in air or in the presence of I₂ (Scheme 1). The molecular structure of [κ^2 -AcOB(mim^{Bu'})₃]₂Pd has been determined by X-ray diffraction (Fig. 5),⁸ thereby demonstrating the formation of a unique tris(2-mercaptoimidazolyl) borate ligand which features an acetate substituent on boron. In this regard, related [XTm^{Bu'}] ligands have recently been obtained in an iron system *via* reactions of the ferraboratrane [κ^4 -B(mim^{Bu'})₃]Fe(CO)₂ with, for example, [PhC(O)O]₂ and CHCl₃, to give [PhC(O)OTm^{Bu'}]Fe[κ^2 -OC(O)Ph] and [CITm^{Bu'}]FeCl, respectively.^{6d,20} On this basis, it is possible that a {[B(mim^{Bu'})₃]Pd(OAc)} boratrane species plays a role in the formation of [κ^2 -AcOB(mim^{Bu'})₃]₂Pd *via* a metal-centered B–O coupling step, but other mechanisms are certainly feasible.

In summary, $[\kappa^4-B(\min^{Bu'})_3]Pd(PMe_3)$ and $\{[\mu-\kappa^1,\kappa^3-B(\min^{Bu'})_3]Pd\}_2$ have been shown by X-ray diffraction to possess Pd \rightarrow B bonds. Calculations indicate that the palladium center in $[\kappa^4-B(\min^{Bu'})_3]Pd(PMe_3)$ has a d⁸ (and not d¹⁰) configuration, in accord with the concept that the palladium center must provide a pair of electrons to form the Pd \rightarrow B bond.² Finally, $[\kappa^2-AcOB(\min^{Bu'})_3]Pd$, which contains an interesting boron-functionalized [AcOTm^{Bu'}] ligand, has been isolated.

We thank the National Science Foundation (CHE-03-50498) for their support of this research.

Notes and references

For example, derivatives with R = Me,^{a-c} Ph,^d Mes,^d Cum,^e Bu¹,^e CH₂Ph,^f and p-Tol^f are known. See: (a) M. Garner, J. Reglinski, I. Cassidy, M. D. Spicer and A. R. Kennedy, *Chem. Commun.*, 1996, 1975; (b) J. Reglinski, M. Garner, I. D. Cassidy, P. A. Slavin, M. D. Spicer and D. R. Armstrong, J. Chem. Soc., Dalton Trans., 1999, 2119; (c) C. Santini, G. G. Lobbia, C. Pettinari, M. Pellei, G. Valle and S. Calogero, *Inorg. Chem.*, 1998, **37**, 890; (d) C. Kimblin, B. M. Bridgewater, D. G. Churchill and G. Parkin, *Chem. Commun.*, 1999, 2301; (e) M. Tesmer, M. Shu and H. Vahrenkamp, *Inorg. Chem.*, 2001, **40**, 4022; (f) S. Bakbak, V. K. Bhatia, C. D. Incarvito, A. L. Rheingold and D. Rabinovich, *Polyhedron*, 2001, **20**, 3343.

- 2 Dative M→B interactions can also be represented as M⁺-B⁻. Despite their different appearance, however, these representations correspond to exactly the same bonding situation. See, for example: G. Parkin, *Organometallics*, 2006, **25**, 4744.
- 3 (a) A. F. Hill, G. R. Owen, A. J. P. White and D. J. Williams, Angew. Chem., Int. Ed., 1999, 38, 2759; (b) M. R. St.-J. Foreman, A. F. Hill, G. R. Owen, A. J. P. White and D. J. Williams, Organometallics, 2003, 22, 4446.
- 4 Early examples of compounds proposed to possess M→B interactions have been questioned. See, for example: (a) H. Braunschweig, Angew. Chem., Int. Ed., 1998, 37, 1786; (b) H. Braunschweig and M. Colling, Coord. Chem. Rev., 2001, 223, 1.
- 5 Structurally characterized complexes with M→B bonds are, however, well known for the main group metals. See: A. H. Cowley, *Chem. Commun.*, 2004, 2369 and references therein.
- 6 (a) I. R. Crossley, A. F. Hill and A. C. Willis, Organometallics, 2006, 25, 289 and references therein; (b) D. J. Mihalcik, J. L. White, J. M. Tanski, L. N. Zakharov, G. P. A. Yap, C. D. Incarvito, A. L. Rheingold and D. Rabinovich, Dalton Trans., 2004, 1626; (c) V. K. Landry, J. G. Melnick, D. Buccella, K. Pang, J. C. Ulichny and G. Parkin, Inorg. Chem., 2006, 45, 2588; (d) J. S. Figueroa, J. G. Melnick and G. Parkin, Inorg. Chem., 2006, 45, 7056.
- 7 For other types of complexes with M→B bonds, see ref. 5 and: (a) K. S. Cook, W. E. Piers, T. K. Woo and R. McDonald, Organometallics, 2001, 20, 3927; (b) K. S. Cook, W. E. Piers and S. J. Rettig, Organometallics, 1999, 18, 1575; (c) I. R. Crossley, A. F. Hill and A. C. Willis, Organometallics, 2005, 24, 1062; (d) S. Bontemps, H. Gornitzka, G. Bouhadir, K. Miqueu and D. Bourissou, Angew. Chem., Int. Ed., 2006, 45, 1611; (e) R. J. Blagg, J. P. H. Charmant, N. G. Connelly, M. F. Haddow and A. G. Orpen, Chem. Commun., 2006, 2350; (f) H. Braunschweig, K. Radacki, D. Rais and G. R. Whittell, Angew. Chem., Int. Ed., 2005, 44, 1192; (g) S. A. Westcott, T. B. Marder, R. T. Baker, R. L. Harlow, J. C. Calabrese, K. C. Lam and Z. Lin, Polyhedron, 2004, 23, 2665; (h) D. Curtis, M. J. G. Lesley, N. C. Norman, A. G. Orpen and J. Starbuck, J. Chem. Soc., Dalton Trans., 1999, 1687; (i) H. Braunschweig, C. Kollann and D. Rais, Angew. Chem., Int. Ed., 2006, 45, 5254.
- 8 The molecular structures of all new compounds have been determined by X-ray diffraction. Thermal parameters for the structures illustrated are at the 20% probability level. CCDC 617723–617726. For crystallographic data in CIF or other electronic format, see DOI: 10.1039/ b611654j.
- 9 The mechanism of $\{[\mu + \kappa^1, \kappa^3 B(mim^{Bu'})_3]Pd\}_2$ formation and the ultimate fate of the B–H hydrogen is unknown.
- 10 A binuclear rhodium complex derivative that exhibits a bridging [B(mim^{Mc})₃] ligand has been reported, but the bridging mode is very different to that in {[μ-κ¹,κ³-B(mim^{Bu'})₃]Pd}₂. See: I. R. Crossley, A. F. Hill, E. R. Humphrey and A. C. Willis, *Organometallics*, 2005, 24, 4083.
- 11 Pd–B bond lengths for compounds listed in the Cambridge Structural Database (CSD) span the range 2.006–2.686 Å, with a mean value of 2.259 Å (CSD version 5.27).
- 12 S. Onozawa, Y. Hatanaka, T. Sakakura, S. Shimada and M. Tanaka, Organometallics, 1996, 15, 5450–5452.
- 13 S. Onozawa and M. Tanaka, Organometallics, 2001, 20, 2956.
- 14 For a further example, see: H. Braunschweig, K. Radacki, D. Rais and G. R. Whittell, Angew. Chem., Int. Ed., 2005, 44, 1192.
- 15 I. R. Crossley and A. F. Hill, Organometallics, 2004, 23, 5656.
- 16 B–Pd–S3' = 178.4(1)° and S1–Pd–S2 = $154.7(1)^{\circ}$.
- 17 Butterfly distortions have been observed for some other four-coordinate d⁸ Pd complexes. See: (a) C. M. Frech, L. J. W. Shimon and D. Milstein, *Angew. Chem., Int. Ed.*, 2005, 44, 1709; (b) O. Grossman, C. Azerraf and D. Gelman, *Organometallics*, 2006, 25, 375; (c) J. Yin and S. L. Buchwald, *J. Am. Chem. Soc.*, 2002, 124, 6043.
- 18 Y. Jean, Molecular Orbitals of Transition Metal Complexes, Oxford University Press, New York, 2005, pp. 66.
- 19 For a rare example of a tetrahedral d⁸ Pd complex, see: J. S. L. Yeo, J. J. Vittal and T. S. A. Hor, *Chem. Commun.*, 1999, 1477.
- 20 For an example of the transfer of an acetate ligand to boron, see: K. Fujita, S. Hikichi, M. Akita and Y. Moro-oka, *J. Chem. Soc., Dalton Trans.*, 2000, 117.